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a b s t r a c t

Finite mixture models are useful tools and can be estimated via the EM algorithm. A main
drawback is the strong parametric assumption about the component densities. In this pa-
per, a much more flexible mixture model is considered, which assumes each component
density to be log-concave. Under fairly general conditions, the log-concavemaximum like-
lihood estimator (LCMLE) exists and is consistent. Numeric examples are also made to
demonstrate that the LCMLE improves the clustering results while comparingwith the tra-
ditional MLE for parametric mixture models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The finite mixture model (McLachlan and Peel, 2000; Mcnicholas and Murphy, 2008) provides a flexible methodology
for both theoretical and practical analysis. It has a density of the form

f (x) =

K
j=1

λjgj(x; θj) x ∈ Rd, (1.1)

where λ1, . . . , λK are the mixing proportions and gj(x; θj)’s are component densities. The unknown parameters in the
mixture model (1.1) can be estimated by the EM algorithm, see e.g. Dempster et al. (1977) and McLachlan and Krishnan
(2007). Onemajor drawback of the traditionalmixturemodel (1.1) is the strongparametric assumption about the component
density gj. It is often too restrictive and the density estimationmay be inaccurate due to themodelmisspecification. Another
drawback is that each model requires a specific EM algorithm based on the parametric assumption.

To relax the parametric assumption, nonparametric shape constraints are becoming increasingly popular. In this paper,
wemake one fairly general shape constraint for ourmixturemodel.We assume that each component density is log-concave.
A density g is log-concave if log g is concave. Examples of log-concave densities include normal, Laplace, logistic, as well as
gamma and beta with certain parameter constraints. Log-concave densities have lots of nice properties as described by
Balabdaoui et al. (2009). Their nonparametric maximum likelihood estimators were studied by Dümbgen and Rufibach
(2009), Cule et al. (2010), Cule and Samworth (2010), Chen and Samworth (2013), Pal et al. (2007) and Dümbgen et al. (2011)
(referred as [DSS 2011] thereafter). The convergence rates of these estimators for log-concave densities were studied by

∗ Correspondence to: North Carolina State University, 5109 SAS Hall, 2311 Stinson Dr, Raleigh, NC 27695, USA.
E-mail addresses: hhu5@ncsu.edu (H. Hu), wu@stat.ncsu.edu (Y. Wu), weixin.yao@ucr.edu (W. Yao).

http://dx.doi.org/10.1016/j.csda.2016.03.002
0167-9473/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2016.03.002
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2016.03.002&domain=pdf
mailto:hhu5@ncsu.edu
mailto:wu@stat.ncsu.edu
mailto:weixin.yao@ucr.edu
http://dx.doi.org/10.1016/j.csda.2016.03.002


138 H. Hu et al. / Computational Statistics and Data Analysis 101 (2016) 137–147

Doss and Wellner (2013) and Kim and Samworth (2014). Such estimators provide more generality and flexibility without
any tuning parameters.

In our model, we assume that x1, . . . , xn are independent d-dimensional random variables with distribution Q0 and the
mixture density f0. The mixture density f0 belongs to a given class

F =


f : f (x) =

K
j=1

fj(x) =

K
j=1

λj exp{φj(x)},λ ∈ Λ,φ ∈ Φ


, (1.2)

where λ = (λ1, . . . , λK ), Λ = {(λ1, . . . , λK ) : 0 < λj < 1,
K

j=1 λj = 1}, φ = (φ1, . . . , φK ), and Φ =

{(φ1, . . . , φK ) : φj is concave}. We assume that each φj is continuous and is coercive in the sense that φj(x) → −∞ as
∥x∥ → ∞ (j = 1, . . . , K).

One issue for mixture models is that the likelihood might be unbounded in some cases. For example, the likelihood
function for a normal mixture takes the form of L(θ|x) =

n
i=1(λg(xi|µ1, σ

2
1 ) + (1 − λ)g(xi|µ2, σ

2
2 )), where θ =

{(λ, µ1, µ2, σ
2
1 , σ

2
2 ) : σ 2

1 , σ
2
2 > 0, λ ∈ (0, 1)} and g is the density function for the standard normal distribution.

When µ1 = x1 and σ 2
1 → 0, L(θ|x) → ∞ (see Section 3.10 of McLachlan and Peel, 2000 for detailed discussions).

Many methods have been proposed to solve the unboundedness issue of mixture likelihood, see for example, Hathaway
(1985), Chen et al. (2008), and Yao (2010). Note that, similar to traditional normal mixture models with unequal variances,
the likelihood functions for mixtures of log-concave densities are unbounded as well. Thus, similar to Hathaway (1985),
we will define LCMLE on a constrained parameter space. Let Mj(φ) = maxx∈Rd{φj(x)}, M(1)(φ) = minj{Mj(φ)}, and
M(K)(φ) = maxj{Mj(φ)}. We further define the ratio S(φ) = M(1)(φ)/M(K)(φ). Here, we borrow the idea of Hathaway
(1985) by restricting our interest to a constrained subspace 8η such that 8η = {φ ∈ 8 : |S(φ)| ≥ η > 0} for some
η ∈ (0, 1]. This restriction avoids estimating the case that the modes of different components differ a lot. By restricting on
8η , we focus our interest on f ∈ Fη , where

Fη =


f : f (x) =

K
j=1

fj(x) =

K
j=1

λj exp{φj(x)},λ ∈ Λ,φ ∈ Φη


. (1.3)

Let Qn be the empirical distribution of X1, . . . , Xn. The (restricted) log-concave maximum likelihood estimator
(LCMLE) is

fn = f (·|Qn) = argmax
f∈Fη


log(f )dQn. (1.4)

In practice, similar to Hathaway (1985), picking η can be tricky for some extreme case. If η is too small, there might be a
chance that some boundary point |S(φ)| = η maximizes the log-likelihood and the solution will depend on the choice of
η. In this paper, we do not focus on the issue of choosing η. The constrained subspace 8η is mainly used for theoretical
development. Based on our empirical experience, if we start the algorithm from a reasonable initial value, such as the
maximum likelihood estimate assuming all components are normal with equal variance, the unboundedness issue is very
rare.

Many methods have been proposed to relax the parametric assumption of (1.1). Hunter et al. (2007), Bordes et al.
(2006b), Butucea and Vandekerkhove (2014), and Chee and Wang (2013) considered the extension of (1.1) by assuming all
component densities are symmetric but unknown. Bordes et al. (2006a), Bordes and Vandekerkhove (2010), Hohmann and
Holzmann (2013), Xiang et al. (2014), and Ma and Yao (2015) considered the extension of (1.1) when K = 2 and one of the
component densities is symmetric but unknown.Mixtures of log-concave densities have been studied by Chang andWalther
(2007), Cule et al. (2010) and Balabdaoui and Doss (2014). Chang and Walther (2007) provided an EM-type algorithm and
demonstrated sound numerical results in the simulation study. Cule et al. (2010) applied the log-concave mixture model
to the Wisconsin breast cancer data set. Balabdaoui and Doss (2014) considered a special case when all components have
the same symmetric log-concave densities but with different location parameters, and proved the

√
n-consistency of their

proposed M-estimators for mixing proportion as well as location parameters. Note that these models are special cases from
the family of F . Therefore, their estimators and asymptotic results cannot be applied here. For example, the mixture of
normal distributions with different component means and variances belongs to F but does not belong to the model family
considered by Balabdaoui and Doss (2014).

To the best of our knowledge, none of the existing works has studied the theoretical properties of the estimator for the
log-concavemixturemodel (1.2) under such general conditions. This paper aims to fill in this gap.We show that theoretically,
the LCMLE (in the restricted subset Fη) exists, and is consistent under fairly general conditions. However, we want to point
out that the extension of the properties of the log-concave density to mixtures of log-concave densities is not trivial. The
log-density ln = l(·|Qn) = log fn is no longer guaranteed to be a concave function. Consequently, many nice theoretical
properties stated in DSS 2011 no longer hold for our mixture model.

The rest of the paper is organized as follows. Section 2 introduces the basic setup, model details, and notations. Section 3
states the theoretical properties. We review the EM-type algorithm for log-concavemixturemodels in Section 4. Simulation
and real data studies are conducted in Sections 5 and 6. We end the article with a short conclusion in Section 7. The proofs
and lemmas are presented in the Appendix.
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2. Log-concave maximum likelihood estimator

Let Q = Q(d) be the family of all distributions Q on Rd. Our goal is to maximize a log-likelihood-type functional:

L(φ,λ,π,Q ) =


log


K

j=1

λj exp{φj(x)}


dQ (x)−

K
j=1

πj


exp{φj(x)}dx − 1


, (2.1)

where πj’s are Lagrange multipliers to incorporate the constraint

exp{φj(x)}dx = 1 (j = 1, . . . , K). We define a profile

log-likelihood:

L(Q ) = sup
φ∈Φη,λ∈Λ,π

L(φ,λ,π,Q ). (2.2)

If, for fixed Q , (ψ,λ∗,π∗)maximizes L(φ,λ,π,Q ), it will automatically satisfy that:

π∗

j = E(π(j|x)) =


λ∗

j exp{ψj(x)}
K

h=1
λ∗

h exp{ψh(x)}
dQ (x); (2.3)


exp{ψj(x)}dx = 1 (j = 1, 2, . . . , K). (2.4)

Note that differing from the non-mixture setting in DSS 2011, π∗

j is not equal to 1.
To verify this, note that φ + c ∈ Φ for any fixed vector of functions φ ∈ Φ and arbitrary c = (c1, . . . , cK )T ∈ RK , and

∂L(ψ + c,λ,π,Q )
∂ch


c=0

=




λh exp{ψh(x)}
K

j=1
λj exp{ψj(x)}

dQ (x)− πh


eψh(x)dx

 = 0,

∂L(ψ,λ,π,Q )
∂πh

= 1 −


exp{ψh(x)}dx = 0.

The maximizer (ψ,λ∗) forms the log-likelihood maximizer l∗(x) = log
K

j=1 λ
∗

j e
ψj(x).

3. Theoretical properties

Before we state the main theories, we first define the convex support of a distribution.

Definition. For any distribution Q , let Q (C) be the probability measure of the set C . The convex support of Q is the set such
that:

csupp(Q ) =


{C : C ⊆ Rd closed and convex,Q (C) = 1}.

The convex support is itself closed and convex with Q (csupp(Q )) = 1.

In the following text. we define:

Q1
= {Q ∈ Q :


∥x∥dQ < ∞}, (we define ∥x∥ as Euclidean norm in our paper).

Q0
= {Q ∈ Q : interior(csupp(Q )) ≠ ∅}.

Theorem 1. For any Q ∈ Q1
∩ Q0, the value of L(Q ) is real and there exists a maximizer:

(ψ,λ∗,π∗) = argmax
φ∈Φη,λ∈Λ,π

L(φ,λ,π,Q ) such that


eψj(x)dx = 1 for j = 1, . . . , K .

Next, we establish the consistency of the estimated mixture density. In the following, we refer to the concept of
convergence of distribution as converging with respect to Mallows distance D1 : D1(Q ,Q ′) = inf(X,X ′) E∥X − X ′

∥, where Q
andQ ′ are two distributions and the infimum is taken over all pairs of (X, X ′) such that X ∼ Q and X ′

∼ Q ′. The convergence
ofQn toQ0 with respect toMallows distance, i.e. limn→∞ D1(Qn,Q ) = 0, is equivalent to assuming thatQn weakly converges
to Q0, denoted by Qn →

w Q , and


∥x∥dQn(x) →


∥x∥dQ (x) as n → ∞.

Theorem 2. Let Qn be a sequence such that limn→∞ D1(Qn,Q0) = 0 for some Q0 ∈ Q1
∩ Q0. Then,

lim
n→∞

L(Qn) = L(Q0).
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Letφnj’s and λnj’s be themaximizer corresponding to profile log-likelihood L(Qn), i.e., fn(x) =

λnj exp{φnj(x)} = f (·|Qn) ∈ Fη .

For f0(x) = f (·|Q0) ∈ Fη , we have:

lim
n→∞,x→y

fn(x) = f0(y) for all y ∉ ∂{f0 ≥ 0}, (3.1)

lim
n→∞,x→y

fn(x) ≤ f0(y) for all y ∈ Rd, (3.2)

lim
n→∞


|fn(x)− f0(x)|dx = 0. (3.3)

The above theorem showed the consistency of the estimatedmixture density. If we further assume that the true mixture
density f0(x) is identifiable, then each estimated component density and mixing proportions are also consistent. We will
discuss more about the identifiability issue in Section 7.

4. EM-type algorithm

The EMalgorithm for estimating log-concavemixture densities has already beendevelopedbyChang andWalther (2007).
Here we briefly summarize it. First we randomly generate initial values for the normal mixture EM-algorithm and run the
normal mixture EM-algorithm until convergence, which will provide a good initial value. Then we use the outcome as the
starting values for our EM-type algorithm. We assume the observed data X = (x1, . . . , xn)T ∈ Rn×d to be incomplete and
define the missing value Z = (z1, . . . , zn)T , where xi = (xi,1, . . . , xi,d)T and zi is a K -dimension vector with its jth element
given by:

zij =


1 if xi belongs to jth group,
0 otherwise.

So the complete log-likelihood is:

log f (φ,λ;X, Z) = log
n

i=1

K
j=1

[λjeφj(xi)]zij =

n
i=1

K
j=1

zij[log λj + φj(xi)].

In E-step, we replace zij by

z(t+1)
ij =

λ
(t)
j e

φ(t)j (xi)

K
h=1
λ
(t)
h eφ(t)h (xi)

.

In M-step, first we update λ by λ(t+1)
j =

1
n

n
i=1 z

(t+1)
ij , j = 1, . . . , K . Then we update φj bymaximizing

n
i=1 z

(t+1)
ij φj(xi)

with respect to φj through the function called mlelcd in the R package LogConcDEAD (Cule et al., 2009) and get estimatorφ(t+1)
j for j = 1, . . . , K . The estimation of φj has been studied by Walther (2002) and Rufibach (2007). Given i.i.d. data

X1, . . . , Xn from distribution f , the Log-concave Maximum Likelihood Estimator (LCMLE)fn exists uniquely and has support
on the convex hull of the data (by Theorem 2 of Cule et al., 2010). The log-likelihood estimator logfn is a piecewise
linear function with knots which are a subset of {X1, . . . , Xn}. Walther (2002) and Rufibach (2007) provided algorithms for
computingfn(Xi), i = 1, . . . , n. The entire log-density logfn can be computed by linearly interpolating between logfn(X(i))
and logfn(X(i+1)). Walther (2002) and Rufibach (2007) also pointed out that it is natural to apply weights for an EM-type
algorithm. The z(t+1)

1j , . . . , z(t+1)
nj can be viewed as weights for x1, . . . , xn when estimating the log-concave density φj in

our algorithm for j = 1, . . . , K . The algorithm stops once the increasing increment ℓ(t+1)
− ℓ(t) is below 10−7, where

ℓ(t) =
n

i=1 log
k

j=1 λ
(t)
j exp{φ(t)j (xi)}.

To avoid the local maximum, we restart the algorithm 20 times and choose the result with the highest log-likelihood.
As we discussed in Section 1, the unboundedness issue of the log-likelihood does happen infrequently, mostly due to
an inappropriate initial. In our algorithm, we borrow the idea of restarting process in many existing EM-algorithms for
parametric mixture models, e.g. Benaglia et al. (2009). If the log-likelihood goes to infinity in any iteration, our EM-type
algorithm will be forced to restart from the beginning with a new randomly chosen initial.

5. Simulation results

5.1. Copula procedure to generate multivariate log-concave mixtures

As we do not have a tuning issue for LCMLE, the most attractive application of LCMLE is the density estimation with
dimensionality higher than 1. To generate data from a multivariate log-concave mixture model, we borrow the idea of
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Table 1
The simulation setups of Model II–IV.

Model d Marginal distribution of component 2

II 2 N(0, 1), and Gamma(2, 1)+ 2
III 3 N(0, 1), Gamma(2, 1)− 1, and Beta(4, 1)
IV 4 N(0, 1), Gamma(2, 1)+ 2, Beta(4, 1),

Laplace(0, 1)+ 1

Table 2
Simulation results of Model I–IV.

Model d AMN1 AMN2 MSE1 MSE2 AvARI

I 1 17.56 10.86 0.0016 0.0007 0.91
II 2 30.35 13.28 0.0085 0.0013 0.86
III 3 12.43 4.79 0.0010 0.0005 0.93
IV 4 7.97 3.21 0.0006 0.0004 0.95

the copula procedure from Chang and Walther (2007). For a d-dimensional log-concave mixture density, we observe n
observations x1, . . . , xn, where xi = (xi,1, . . . , xi,d)T ∈ Rd. To simplify our simulation, we focus on the model whose
univariate marginal distributions are log-concave. We model the dependence structure with a normal copula. Suppose
(N1, . . . ,Nd)

T are multivariate normal with mean 0 and covariance matrix Σ . Let F1, . . . , Fd be the CDFs of the desired
univariate log-concave distributions. Then,

xi = (xi,1, . . . , xi,d)T = (F−1
1 (Φ(N1)), . . . , F−1

d (Φ(Nd)))
T .

5.2. Significant Improvement when densities are log-concave mixtures

We first generate 500 observations from a univariate log-concave mixture model: 0.3Logistic(0, 1) + 0.7Laplace(5, 1)
(referred asModel I). This setup is amore general form of Chang andWalther (2007), as Chang andWalther (2007) only con-
sidered the case that one component is a location shift of the other. For themultivariate cases, we generate 500 observations
based on the copula procedure as we discussed in Section 5.1 for Model II through IV, which are multivariate log-concave
mixturemodelswith dimensionality d from 2 to 4. For eachmodel, component 1 (with probability 0.3) is generated as a joint
normal distribution N(0, Id); component 2 (with probability 0.7) is generated through a normal copula N(0, 0.5Id + 0.51d),
where Id is a d×d identitymatrix and 1d is a d×dmatrix of ones. Themarginal distributions of component 2 are summarized
in Table 1.

We repeat the simulation 100 times for each model. When evaluating the simulation results for mixture models, there is
a well-known label switching issue when sorting the labels for mixture models (Stephens, 2000; Yao and Lindsay, 2009). In
this paper, we adopt themethod of Yao (2015) to find labels byminimizing the distance between the estimated classification
probabilities and the true labels over different permutations. After sorting the labels, we compute the mean square errors
obtained by the log-concave EM algorithm (MSE2) and compare them with the parametric normal EM-algorithm (MSE1)
to compare the accuracy of the estimated λ’s. As mixture models also serve as methods of classification, we compute
the average misclassification number (denoted as AMN2 for the log-concave EM-algorithm and AMN1 for the normal
EM-algorithm) among the 100 replicates. We are also interested in the difference between two classification methods. One
of many possible measurements to summarize the similarity between two clusterings is the Adjusted Rand Index (ARI),
which ranges from −1 to 1, see Hubert and Arabie (1985) for detailed description of ARI . In this paper, we compute the
average Adjusted Rand Index (AvARI) among the 100 replicates.

We report results over the 100 replicates in Table 2.We observe significant smaller MSEs for the estimated λ obtained by
log-concave mixture models. Especially for Model I and II, the mean square errors obtained by log-concave mixture model
are less than half of those obtained by normal mixture model. In terms of classification, the average misclassification num-
ber among the 500 observations are significantly reduced as well. The AvARI indicates that the classification results of the
log-concave mixture model and the normal mixture model are quite different, especially for Model I and II.

To compare the classification result for each replicate, we take d = 4 as an example and show the clustering results
in Fig. 1. In Fig. 1(a), each point represents a single replicate from Model IV’s setup. The x-axis represents the number of
misclassification by the Normal mixture EM-algorithm. The y-axis represents the number of misclassification by our log-
concave mixture EM-algorithm. We observe significant improvement in the misclassification rates, as all the points for our
100 replicates are below the identity line.

To better illustrate the finite sample performance of the LCMLE, we pick one replicate fromModel I. To compare the fitted
densities with the true densities, in Fig. 2, we plot the true component densities in the solid lines and the fitted densities in
the dashed line. Even for a finite sample size of 500, the LCMLE for the log-concave mixture model approximates the true
component densities well.
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(a) Model IV. (b) Model VIII.

Fig. 1. Four-dimensional clustering result: normalmixture EM-algorithm vs. log-concavemixture EM-algorithmby number ofmisclassifications. The solid
lines represent the identity.

Fig. 2. EM-type algorithm estimation for log-concave mixtures for a single replicate of Model I. Solid line represents the truth and dashed line represents
the estimation results. The fitted λ̂ = 0.3076.

5.3. Insignificant penalty when the parametric assumptions are correct

Weare also interested in the price thatwe have to pay for the flexibilitywhile the data actually are fromnormalmixtures.
For Model V–VIII, we generate n = 500 observations from a joint normal mixture distribution, in which the first component
(with probability 0.4) is a d-dimensional normal distribution with mean 0d and covariance matrix 0.5Id + 0.51d, and the
second component (with probability 0.6) is a d-dimensional normal distribution with mean µd and the same covariance
matrix, where µ1 = 5, µ2 = (3, 2)T , µ3 = (3, 2, 2)T , and µ4 = (3, 1, 3, 1)T . We also repeat the simulation 100 times and
compare the same criteria.

From Table 3, we observe no significant penalty for applying log-concave mixture models instead of normal mixture
models. The MSEs and average misclassification numbers for log-concave mixture models are either almost the same or
only a little bit higher than those for the multivariate normal mixture model. The classification results of the log-concave
mixture model and the normal mixture model are quite similar to each other, as we observe the AvARI ’s are close to 1 in
Table 3. This phenomena is further supported in Fig. 1(b), which shows the classification results for Model VIII (d = 4).
We observe no significant difference in terms of misclassifications, as most points in Fig. 1(b) are around the identity line.
Consequently, we conclude that the log-concavemixturemodel is amore flexiblemethodologywithout significant penalties
if the data are actually from normal mixtures.

6. Real data application

To further illustrate the performance of log-concavemixture models, we apply the log-concave EM algorithm to the crab
data set of Campbell and Mahon (1974), which contains two types of crabs in the data set: 100 blue crabs and 100 orange
crabs. We focus on these blue crabs, which include n1 = 50 males and n2 = 50 females referred to as groups G1 and G2,
respectively. For each crab, there are five measurements. We are only interested in two of them: RW (rear width) and BD
(body depth), both in unit of mm. In Fig. 3, we give the scatter plot of RW and BD.

Fitting a 2-dimensional two component log-concave mixture model results in 18 observations misclassified. Fifteen
observations from G1 are misclassified into G2 and three observations from G2 are misclassified into G1. The normal mixture
model results in 20 observations misclassified in total. Two additional observations from G1 are misclassified into G2.
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Fig. 3. Scatter plot of RW (rear width) and BD (body depth) of the Blue Crab data set.

Table 3
Simulation results of Model V–VIII.

Model d AMN1 AMN2 MSE1 MSE2 AvARI

V 1 3.17 3.51 0.0004 0.0005 0.99
VI 2 33.95 37.12 0.0018 0.0020 0.91
VII 3 21.95 23.57 0.0008 0.0008 0.94
VIII 4 17.71 18.20 0.0018 0.0020 0.96

7. Conclusion

The log-concave maximum likelihood estimator (LCMLE) provides more flexibility to estimate mixture densities, when
compared to the traditional parametric mixture models. The estimation of LCMLE for log-concave mixtures can be
achieved by an EM-type algorithm. The LCMLE is not sensitive to the model mis-specification and consequently, only one
implementation of the EM-type algorithm is necessary. Through simulation studies, we observed significant improvements
in the sense of classification and no significant penalties when the parametric assumption is indeed correct.

In this paper, we proved the existence of the LCMLE for log-concave mixture models. The consistency is also proved for
the estimated mixture density. If the true mixture density is identifiable, then the estimated component densities are also
identifiable. However, it is not an easy task to prove the overall identifiability for the most general family of mixtures of
log-concave distributions in (1.2) from a nonparametric point of view. Some restrictive conditions, such as symmetry, are
needed to ensure identifiability. Hunter et al. (2007) and Bordes et al. (2006b) proved the identifiability of (1.1) if K = 2
and both component densities are symmetric but with different location parameters. Balabdaoui and Doss (2014) have
considered a special case of (1.2), when φj(x; θj) = φ(x − θj) and φ is a symmetric concave function about 0, and the
identifiability of (1.2) follows from Hunter et al. (2007) and Bordes et al. (2006b) when K = 2.
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Appendix A. Lemmas

Lemma 1 is taken from Cule and Samworth (2010). Lemmas 2–5 are taken from DSS 2011. Lemma 6 is the extension of
Lemma 2.13 of DSS 2011.

Lemma 1. For any log-concave distribution Q with density f , there exist finite constants B1 = B1(Q ) > 0 and B2 = B2(Q ) > 0
such that f (x) ≤ B1 exp(−B2∥x∥) for all x ∈ Rd.

Lemma 2. The following properties of Q are equivalent:

(a) csupp(Q ) has non-empty interior.
(b) Q (H) < 1 for any hyperplane H ⊂ Rd.
(c) With Leb denoting Lebesgue measure on Rd,

lim
δ↓0

sup{Q (A) : A ⊂ Rd closed and convex, Leb(A) ≤ δ} < 1.
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Lemma 3. Let φ be the function such that for any x, y ∈ interior(dom(φ)) and t ∈ (0, 1), if tx+ (1− t)y ∈ interior(dom(φ)),
φ(tx + (1 − t)y) ≥ tφ(x) + (1 − t)φ(y) and for C ⊆ Rd,


C eφ(x)dx ≤ 1. We define Dq = {x ∈ C : φ(x) ≥ q}. For any

r < M ≤ maxx∈Rd φ(x),

Leb(Dr) ≤ (M − r)de−M
 M−r

0
tde−tdt.

Lemma 4. Let φ, φ1, φ2, . . . be concave functions and φn ≤ φ. Further we assume the set H = {x : lim infn→∞ φn(x) > −∞}

is not empty. Then there exist a subsequence (φn(k))k of (φn)n and a function φ such that H ⊂ dom(φ) d
= {φ > −∞}:

lim
k→∞,x→y

φn(k)(x) = φ(y) for all y ∈ interior(dom(φ)),

lim
k→∞,x→y

φn(k)(x) ≤ φ(y) for all y ∈ Rd.

Lemma 5. Suppose Qn is a sequence converged to some distribution Q and h be a nonnegative and continuous function, then

lim inf
n→∞


hdQn ≥


hdQ .

If the stronger statement lim infn→∞


hdQn =


hdQ < ∞ holds, then for any function f such that |f |/(1 + h) is bounded,

lim
n→∞


fdQn =


fdQ .

Lemma 6. A point x ∈ Rd is an interior point of C if and only if

h(Q , x) = sup{Q (E) : E ⊂ C, E closed and convex, x ∉ interior(E)}/Q (C) < 1.

Proof. For x ∉ interior(E) and closed and convex E, there exists a unit vector uj ∈ Rd such that E is contained in the closed
set HC which is a subset of C:

C ⊇ HC (x) = {y ∈ C : uTy ≤ uT x} ⊇ E.

By the definition of h(Q , x)we conclude h(Q , x) ≤ Q (HC )/Q (C) ≤ 1. There are two cases: E ⊂ HC and E = HC (x). For the
case E ⊂ HC , by definition h(Q , x) < 1 strictly. For the case E = HC (x), aswe have x ∉ interior(E) but x ∈ HC (x), we conclude
x ∈ ∂HC (x). Now if x ∉ interior(C), by definition, h(Q , x) = 1. On the other hand, if h(Q , x) = 1, then Q (HC (x)) = Q (C),
which leads to C = HC (x) = E. Combined with x ∉ interior(HC (x)) we can conclude that x ∉ interior(C). Consequently,
x ∉ interior(C) ⇐⇒ h(Q , x) = 1. Thus, x ∈ interior(C) ⇐⇒ h(Q , x) < 1.

Appendix B. Proof of Theorem 1

The first thing is to prove the finiteness of the log-likelihood type function.
L(Q ) is the supremeof L(φ,λ,π,Q ) over allφ ∈ 8,λ ∈ Λ,λ ∈ RK . If we take a special case thatφ∗

j (x) = −(log λ∗

j )−∥x∥,
L(φ∗,λ∗,π,Q ) = log K −


∥x∥dQ > −∞. Consequently, L(Q ) > −∞.

Nowwe show L(Q ) < ∞. As discussed at the end of Section 2, we do restrict our interest to theφ such that

eφj(x)dx = 1

for j = 1, . . . , K . Consequently, we define the log-density as l(x) = log
K

j=1 λje
φj(x) and rewrite the log-likelihood-type

function as L(l,Q ) = L(φ,λ,π,Q ). For the convenience of the proof, we define an envelope function φ(x) = maxj{φj(x)},
i.e. φ(x) ≥ l(x) for every x ∈ Rd. This function is continuous but not smooth on d − 1 dimensional boundaries. These
boundaries divide the csupp(Q ) into K sets: C1, . . . , CK . Each set Cj is defined as Cj = {x ∈ Rd

: φ(x) = φj(x)}. The
sets C1, . . . , CK are disjoint except on the boundaries and Leb(Ci ∩ Cj) = 0 for every i ≠ j. For any x, y ∈ Cj and
t ∈ (0, 1), φ(tx + (1 − t)y) ≥ tφ(x) + (1 − t)φ(y) and


Cj
eφ(x)dx ≤ 1. We define Mj(φ) and S(φ) as stated in Section 1.

As L(l,Q ) ≤
K

j=1 Q (Cj)Mj, Mj > −∞, and the restriction |S(φ)| ≥ η > 0, we focus our interest on Mj > 0 and the only
case which we have to worry about is allMj’s increasing to infinity. We define Dq = {x ∈ Rd

: φ(x) ≥ q}. For any c > 0,

L(l,Q ) ≤


φ(x)dQ =


csupp(Q )\D−cM(1)

φ(x)dQ +


D−cM(1)

φ(x)dQ

≤ −cM(1)(1 − Q (D−cM(1)))+ M(K)Q (D−cM(1))

≤ (1 + cη)

Q (D−cM(1))−

cη
cη + 1


M(K).
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We can always find sufficient large c such that the set D−cM(1) is a closed and convex subset of Rd. We define the set
Dj,q = {x ∈ Cj : φ(x) ≥ q} ⊂ Cj. Obviously Leb(D−cM(1)) =

K
j=1 Leb(Dj,−cM(1)). For any c > 0, applying Lemma 3 to set

Dj,−cM(1) and lettingM = M(1) yield Leb(Dj,−cM(1)) ≤ (1+c)Md
(1)e

−M(1)/(d!+o(1)) → 0 asM(1) → ∞ for every j = 1, . . . , K .
Consequently, Leb(D−cM(1)) → 0 as M(1) → ∞. By our definition, η ∈ (0, 1]. Thus, by Lemma 2, we can find sufficiently
large c and small δ such that

sup{Q (D) : D ⊂ Rd, Leb(D) ≤ δ} <
cη

cη + 1
.

Thus, L(l,Q ) → −∞ as M(1) → ∞, which indicates that when all modes of log-concave densities increase to infinity,
the log-likelihood is poorly characterized. On the other hand, L(l,Q ) ≤ M(K). These considerations show that L(Q ) is finite
and equals the supremum of L(l,Q ) for suitable finiteMj’s such thatMj ∈ [M∗j,M∗

j ] (j = 1, . . . , K).
Let φm,j’s and λm,j’s form a sequence lm(x) = log


λm,j exp{φm,j(x)} such that −∞ < L(lm,Q ) ↑ L(Q ) as m → ∞.

Next, we will prove that for every j ∈ {1, . . . , K}, there exists a point, say, x0,j ∈ interior(csupp(Q )), such that
lim infm→∞ φm,j(x0,j) > −∞.

We define φm(x) = maxj{φm,j(x)}, Cm,j = {x ∈ Rd
: φm(x) = φm,j(x)}, and Mm,j = maxx∈Rd φm,j(x). For any

j∗ ∈ {1, . . . , K}, by picking any x0,j∗ ∈ Cm,j∗ such that φm,j∗(x0,j∗) ∈ [M ′

m,j∗ ,Mm,j∗), where M ′

m,j∗ = maxx∈∂{Cm,j∗ } φm,j∗(x),
there exists a sufficient small ϵ ≥ 0 such that the set Em,j∗ = {x ∈ Cm,j∗ : φm,j∗(x) ≥ φm,j∗(x0,j∗)+ ϵ} is a closed and convex
subset of Cm,j∗ and x0,j∗ is not an interior point of Em,j∗ . Thus,

L(lm,Q ) =


lmdQ ≤


φm(x)dQ =


j≠j∗


Cm,j

φm,j(x)dQ +


Cm,j∗

φm,j∗dQ

≤


j≠j∗

Mm,jQ (Cm,j)+ φm,j∗(x0,j∗)Q (Cm,j∗)+ (Mm,j∗ − φm,j∗(x0,j∗))Q (Em,j∗)

≤

K
j=1

max(Mm,j, 0)+ φm,j∗(x0,j∗)Q (Cm,j∗)(1 − hj∗(Q , x0,j∗)).

These inequalities hold for the case of φm,j∗(x0,j∗) = Mm,j∗ as well (ϵ = 0 accordingly). By Lemma 6, hj∗(Q , x0,j∗) < 1.
Due to the fact thatMm,j∗ is finite, interior(Cm,j∗) is not empty. Consequently, lim infm→∞ Q (Cm,j∗) > 0, which yields

φm,j∗(x0,j∗) ≥ −

K
j=1

max(Mm,j, 0)− L(lm,Q )

Q (Cm,j∗)(1 − hj∗(Q , x0,j∗))

> −

K
j=1

max(M∗

j , 0)− L(l1,Q )

Q (Cm,j∗)(1 − hj∗(Q , x0,j∗))
> −∞.

Hence, the set Hj = {x : lim infm→∞ φm,j(x) > −∞} is not empty for every j ∈ {1, . . . , K}. From Lemma 1 we conclude
that for each φj, we can find suitable finite positive constants aj, bj > 0 such that φj(x) ≤ aj − bj∥x∥ ≤ a − b∥x∥, where
a = maxj aj > 0 and b = minj bj > 0. Then by Lemma 4, there exist a subsequence (φ1,m(k1))k1 of (φ1,m)m and a concave
function φ1 such that:

lim
k1→∞,x→y

φ1,m(k1)(x) = φ1(y) for all y ∈ interior(dom(φ1)),

lim
k1→∞,x→y

φ1,m(k1)(x) ≤ φ1(y) for all y ∈ Rd.

If we define φ1 = −∞ on Rd
\ dom(φ1), then we can rewrite them as:

lim sup
k1→∞

φ1,m(k1)(x) ≤ φ1(x) for all x ∈ ∂{dom(φ1)},

lim
k1→∞

φ1,m(k1)(x) = φ1(x) for all x ∈ Rd
\ ∂{dom(φ1)}.

We can find a sub-subsequence in the original subsequence, which has the similar property for φ2,m(k2). Keeping doing
this sequentially for all φm,j’s and λm,j’s will yield the common subsequence lm(k) and a function l∗(x) = log


λj exp{φj(x)}

such that:

lim sup
k→∞

lm(k)(x) ≤ l∗(x) for all x ∈ P ,

lim
k→∞

lm(k)(x) = l∗(x) for all x ∈ Rd
\ P ,
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where P = ∪
K
j=1


∂{dom(φj)}


and Leb(P ) = 0. The next step is to prove that l∗(x) is the maximizer. Applying Fatou’s

lemma to the subsequence function lm(k)(x) ≤ a − b∥x∥ yields

lim sup
k→∞


lm(k)dQ ≤


l∗dQ .

Hence,

L(Q ) ≥ l(l∗,Q ) ≥ lim sup
k→∞

L(lm(k),Q ) = L(Q ),

from which we conclude L(l∗,Q ) = L(Q ). The first inequality follows by the definition of L(Q ). The last equality follows by
the definition that lm(k) is a sequence that maximizes L(lm(k),Q ) to L(Q ) as k → ∞. Thus, it concludes the existence of the
maximizer l∗, which indicates the existence of λ∗

j ’s and φ
∗

j ’s.

Appendix C. Proof of Theorem 2

We proof the theorem for a subsequence of Qn. Let L(Qn) → Γ . As in the proof of Theorem 1, ln(x) ≤ a − b∥x∥ and
infφn,j(x0) > −∞ for some x0 ∈ interior(csupp(Q )). Therefore, for a subsequence of (Qn)n, there exists a function l∗ such
that ln(y), l∗(y) ≤ a − b∥y∥, and

lim sup
k→∞

ln(k)(x) ≤ l∗(x) for all x ∈ P ,

lim
k→∞

ln(k)(x) = l∗(x) for all x ∈ Rd
\ P .

By Skorohod’s theorem, there exists a probability space with random variables Xn ∼ Qn, X ∼ Q such that Xn → X almost
surely. We define a random variable Hn = a − b∥Xn∥ − ln(Xn) ≥ 0. Applying Fatou’s lemma to Hn yields,

Γ = lim
n→∞


lndQn = lim

n→∞


(a − b∥x∥)dQn − E(Hn) = a − bγ − lim inf

n→∞
E(Hn)

≤ a − bγ − E

lim inf
n→∞

(Hn)


≤ a − bγ − E

a − b∥X∥ − l∗(X)


= b


∥x∥dQ0 − γ


+


l∗(X)dQ0 = L(l∗,Q0) ≤ L(Q0).

Let l0(x) = log

λjφj(x), i.e. λj’s and φj’s are the results corresponding with l0. In the following proof we utilize a

special approximation scheme. Let l(ϵ)(x) = log

λ
(ϵ)
j φ

(ϵ)
j (x), λ(ϵ)j = λj and φ

(ϵ)
j = infv,c(vTj x + cj) such that ∥vj∥ ≤ ϵ−1

and φj(y) ≤ vTj y + cj. DSS 2011 shows that the approximation φ(ϵ)j is real valued and Lipschitz continuous with constant
ϵ−1. Consequently, l(ϵ)(x) is also Lipschitz-continuous with constant ϵ−1. Moreover, φ(ϵ)j ≥ φj and φ

(ϵ)
j ↓ φj pointwise as

ϵ ↓ 0. Thus, l(ϵ) ↓ l0 pointwise as ϵ ↓ 0 and l(1) ≥ l(ϵ) ≥ l0 for ϵ ∈ (0, 1). With this approximation, it follows from
Lipschitz-continuity,


∥x∥dQ0 = γ < ∞, and the stronger version of Lemma 5 that

Γ = lim
n→∞


lndQn ≥ lim

n→∞
L(l(ϵ),Qn) = lim

n→∞


l(ϵ)dQn −


πj


eφ

(ϵ)
j (x)dx + 1

=


l(ϵ)dQ0 −


πj


exp(φ(ϵ)j (x))dx + 1.

Applyingmonotone convergence theorem to function l(1)−l(ϵ) and dominated convergence theorem to exp{φ(ϵ)j }’s yields,
limϵ→0+ L(l(ϵ),Q0) = L(l0,Q0). Hence, Γ ≥ L(Q0). Combining with Γ ≤ L(l∗,Q0) ≤ L(Q0) yields Γ = L(Q0) = L(l∗,Q0),
which indicates that l∗ equals the maximizer l0 = l(·|Q0) that corresponds to L(Q0).

Applying to density fn = exp{ln} and f0 = exp{l0} yields,

lim
n→∞,x→y

fn(x) = f0(y) for all x ∈ Rd
\ P ,

lim
n→∞,x→y

fn(x) ≤ f0(y) for all y ∈ P ,

where P = ∪
K
j=1


∂{f0j > 0}


and Leb(P ) = 0. Consequently, (fn)n → f0 almost everywhere with respect to Lebesgue

measure. In addition, |fn(x)| ≤ ea−b∥x∥, and

ea−b∥x∥dx is finite. Applying Lebesgue’s dominated convergence theorem yields,

lim
n→∞


|fn(x)− f0(x)|dx = 0.

Consequently, we claim Theorem 2 to be true for a subsequence of the original sequence (Qn)n. It remains to show it is
true for the entire sequence.
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Suppose any assertion about fn is false, then one could replace the initial sequence (Qn)n from the startwith a subsequence
such that one of the following three conditions is satisfied:

(i) limn→∞ fn(xn) > f0(y) for some sequence (xn)n converge to point y;
(ii) limn→∞ fn(xn) < f0(y) for some sequence (xn)n converge to point y;
(iii) limn→∞


|fn(x)− f0(x)|dx > 0.

Any of these three properties are transmitted to subsequence of (Qn)n, which would lead to a contradiction.
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